家居企業(yè)網(wǎng)站建設(shè)報(bào)價(jià)dw網(wǎng)站設(shè)計(jì)步驟
鶴壁市浩天電氣有限公司
2026/01/24 09:00:39
家居企業(yè)網(wǎng)站建設(shè)報(bào)價(jià),dw網(wǎng)站設(shè)計(jì)步驟,銅山區(qū)建設(shè)局網(wǎng)站,東莞市建設(shè)質(zhì)量監(jiān)督站?作者簡(jiǎn)介#xff1a;熱愛(ài)科研的Matlab仿真開(kāi)發(fā)者#xff0c;擅長(zhǎng)數(shù)據(jù)處理、建模仿真、程序設(shè)計(jì)、完整代碼獲取、論文復(fù)現(xiàn)及科研仿真。 #x1f34e; 往期回顧關(guān)注個(gè)人主頁(yè)#xff1a;Matlab科研工作室 #x1f34a;個(gè)人信條#xff1a;格物致知,完整Matlab代碼獲取及仿…?作者簡(jiǎn)介熱愛(ài)科研的Matlab仿真開(kāi)發(fā)者擅長(zhǎng)數(shù)據(jù)處理、建模仿真、程序設(shè)計(jì)、完整代碼獲取、論文復(fù)現(xiàn)及科研仿真。 往期回顧關(guān)注個(gè)人主頁(yè)Matlab科研工作室個(gè)人信條格物致知,完整Matlab代碼獲取及仿真咨詢內(nèi)容私信。內(nèi)容介紹1. Introduction1.1 Research Background and SignificanceWireless Power Transfer (WPT) technology has been widely concerned in the fields of electric vehicles, medical implants, industrial automation and consumer electronics due to its advantages of contactless power supply, safety and reliability. Among various WPT technologies, Pad-Transfer (PT)-WPT system, which is based on the principle of electromagnetic induction or magnetic coupling resonance, has become a research hotspot because of its simple structure and easy engineering implementation. However, the traditional low-order PT-WPT system (such as 2nd-order) has inherent defects such as narrow operating frequency band, low power transfer efficiency under large air gap, and poor load adaptability, which limit its application in high-power and long-distance scenarios.The high-order resonant network can effectively optimize the frequency response characteristics of the WPT system, expand the operating bandwidth, and improve the power transfer efficiency and stability. The Series-Load-Series-Parallel-Compensated (SLSPC) network, as a typical high-order compensated topology, has the advantages of flexible parameter configuration, strong ability to suppress reactive power, and good adaptability to load and air gap changes. Compared with the traditional low-order compensated topologies (such as SS, SP, PS, PP), the SLSPC series topology can realize the optimal matching of the system through the synergistic regulation of multiple compensated components, thereby significantly improving the comprehensive performance of the PT-WPT system.In this context, the research on high-order PT-WPT system based on SLSPC series is of great theoretical and practical significance. It can break through the performance bottleneck of traditional low-order systems, provide a new technical path for high-efficiency and stable WPT in high-power and long-distance scenarios, and promote the further development and application of WPT technology in key fields such as new energy vehicles and aerospace.1.2 Literature ReviewIn recent years, many scholars have carried out extensive research on high-order WPT systems. For example, Zhang et al. proposed a 4th-order SS resonant WPT system, which improved the power transfer efficiency by optimizing the resonant parameters. The experimental results showed that the efficiency was increased by 15% compared with the traditional 2nd-order system under the air gap of 20cm. Li et al. designed a 6th-order SP resonant network, which enhanced the load adaptability of the system through the introduction of additional compensated inductors and capacitors. However, the above high-order topologies have the problems of complex parameter tuning and poor stability under dynamic conditions.For the SLSPC topology, relevant research is still in the initial stage. Wang et al. studied the 4th-order SLSPC WPT system, derived the equivalent circuit model and analyzed the frequency response characteristics. The simulation results showed that the system had a wider operating bandwidth. However, the research only focused on the theoretical analysis, and lacked experimental verification and optimization of key parameters. In addition, the existing research on high-order PT-WPT systems mostly ignores the influence of parasitic parameters and cross-coupling effects between components, which leads to a large gap between the theoretical analysis and the actual system performance.1.3 Research Objectives and ContributionsAiming at the problems of narrow bandwidth, low efficiency and poor stability of traditional low-order PT-WPT systems, this paper focuses on the research of high-order PT-WPT systems based on SLSPC series. The main research objectives are: (1) Establish the accurate mathematical model of the SLSPC-based high-order PT-WPT system, considering the parasitic parameters and cross-coupling effects; (2) Analyze the frequency response, power transfer and efficiency characteristics of the system, and reveal the influence mechanism of key parameters on the system performance; (3) Propose an optimal parameter tuning method to realize the high-efficiency and stable operation of the system; (4) Verify the correctness and effectiveness of the theoretical analysis and optimization method through experiments.The main contributions of this paper are as follows: (1) A high-order PT-WPT system based on SLSPC series is proposed, which effectively expands the operating bandwidth and improves the power transfer efficiency and load adaptability; (2) An accurate mathematical model considering parasitic parameters and cross-coupling effects is established, which provides a reliable theoretical basis for the system analysis and optimization; (3) An adaptive parameter tuning method based on particle swarm optimization (PSO) is proposed, which realizes the optimal matching of the system under dynamic conditions; (4) A series of experiments are carried out to verify the performance of the proposed system, and the results show that the system has excellent comprehensive performance.1.4 Paper StructureThe rest of this paper is organized as follows: Section 2 establishes the mathematical model of the SLSPC-based high-order PT-WPT system, including the equivalent circuit model and the state-space model. Section 3 analyzes the system characteristics, including frequency response, power transfer and efficiency characteristics. Section 4 proposes the optimal parameter tuning method based on PSO. Section 5 presents the experimental setup and results. Section 6 discusses the experimental results and the application prospects of the system. Finally, Section 7 summarizes the full text and puts forward the future research directions.?? 運(yùn)行結(jié)果 部分代碼 參考文獻(xiàn) 部分理論引用網(wǎng)絡(luò)文獻(xiàn)若有侵權(quán)聯(lián)系博主刪除 關(guān)注我領(lǐng)取海量matlab電子書(shū)和數(shù)學(xué)建模資料團(tuán)隊(duì)擅長(zhǎng)輔導(dǎo)定制多種科研領(lǐng)域MATLAB仿真助力科研夢(mèng) 各類智能優(yōu)化算法改進(jìn)及應(yīng)用生產(chǎn)調(diào)度、經(jīng)濟(jì)調(diào)度、裝配線調(diào)度、充電優(yōu)化、車間調(diào)度、發(fā)車優(yōu)化、水庫(kù)調(diào)度、三維裝箱、物流選址、貨位優(yōu)化、公交排班優(yōu)化、充電樁布局優(yōu)化、車間布局優(yōu)化、集裝箱船配載優(yōu)化、水泵組合優(yōu)化、解醫(yī)療資源分配優(yōu)化、設(shè)施布局優(yōu)化、可視域基站和無(wú)人機(jī)選址優(yōu)化、背包問(wèn)題、 風(fēng)電場(chǎng)布局、時(shí)隙分配優(yōu)化、 最佳分布式發(fā)電單元分配、多階段管道維修、 工廠-中心-需求點(diǎn)三級(jí)選址問(wèn)題、 應(yīng)急生活物質(zhì)配送中心選址、 基站選址、 道路燈柱布置、 樞紐節(jié)點(diǎn)部署、 輸電線路臺(tái)風(fēng)監(jiān)測(cè)裝置、 集裝箱調(diào)度、 機(jī)組優(yōu)化、 投資優(yōu)化組合、云服務(wù)器組合優(yōu)化、 天線線性陣列分布優(yōu)化、CVRP問(wèn)題、VRPPD問(wèn)題、多中心VRP問(wèn)題、多層網(wǎng)絡(luò)的VRP問(wèn)題、多中心多車型的VRP問(wèn)題、 動(dòng)態(tài)VRP問(wèn)題、雙層車輛路徑規(guī)劃2E-VRP、充電車輛路徑規(guī)劃EVRP、油電混合車輛路徑規(guī)劃、混合流水車間問(wèn)題、 訂單拆分調(diào)度問(wèn)題、 公交車的調(diào)度排班優(yōu)化問(wèn)題、航班擺渡車輛調(diào)度問(wèn)題、選址路徑規(guī)劃問(wèn)題、港口調(diào)度、港口岸橋調(diào)度、停機(jī)位分配、機(jī)場(chǎng)航班調(diào)度、泄漏源定位、冷鏈、時(shí)間窗、多車場(chǎng)等、選址優(yōu)化、港口岸橋調(diào)度優(yōu)化、交通阻抗、重分配、停機(jī)位分配、機(jī)場(chǎng)航班調(diào)度、通信上傳下載分配優(yōu)化 機(jī)器學(xué)習(xí)和深度學(xué)習(xí)時(shí)序、回歸、分類、聚類和降維2.1 bp時(shí)序、回歸預(yù)測(cè)和分類2.2 ENS聲神經(jīng)網(wǎng)絡(luò)時(shí)序、回歸預(yù)測(cè)和分類2.3 SVM/CNN-SVM/LSSVM/RVM支持向量機(jī)系列時(shí)序、回歸預(yù)測(cè)和分類2.4 CNN|TCN|GCN卷積神經(jīng)網(wǎng)絡(luò)系列時(shí)序、回歸預(yù)測(cè)和分類2.5 ELM/KELM/RELM/DELM極限學(xué)習(xí)機(jī)系列時(shí)序、回歸預(yù)測(cè)和分類2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU門(mén)控神經(jīng)網(wǎng)絡(luò)時(shí)序、回歸預(yù)測(cè)和分類2.7 ELMAN遞歸神經(jīng)網(wǎng)絡(luò)時(shí)序、回歸預(yù)測(cè)和分類2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/長(zhǎng)短記憶神經(jīng)網(wǎng)絡(luò)系列時(shí)序、回歸預(yù)測(cè)和分類2.9 RBF徑向基神經(jīng)網(wǎng)絡(luò)時(shí)序、回歸預(yù)測(cè)和分類2.10 DBN深度置信網(wǎng)絡(luò)時(shí)序、回歸預(yù)測(cè)和分類2.11 FNN模糊神經(jīng)網(wǎng)絡(luò)時(shí)序、回歸預(yù)測(cè)2.12 RF隨機(jī)森林時(shí)序、回歸預(yù)測(cè)和分類2.13 BLS寬度學(xué)習(xí)時(shí)序、回歸預(yù)測(cè)和分類2.14 PNN脈沖神經(jīng)網(wǎng)絡(luò)分類2.15 模糊小波神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)和分類2.16 時(shí)序、回歸預(yù)測(cè)和分類2.17 時(shí)序、回歸預(yù)測(cè)預(yù)測(cè)和分類2.18 XGBOOST集成學(xué)習(xí)時(shí)序、回歸預(yù)測(cè)預(yù)測(cè)和分類2.19 Transform各類組合時(shí)序、回歸預(yù)測(cè)預(yù)測(cè)和分類方向涵蓋風(fēng)電預(yù)測(cè)、光伏預(yù)測(cè)、電池壽命預(yù)測(cè)、輻射源識(shí)別、交通流預(yù)測(cè)、負(fù)荷預(yù)測(cè)、股價(jià)預(yù)測(cè)、PM2.5濃度預(yù)測(cè)、電池健康狀態(tài)預(yù)測(cè)、用電量預(yù)測(cè)、水體光學(xué)參數(shù)反演、NLOS信號(hào)識(shí)別、地鐵停車精準(zhǔn)預(yù)測(cè)、變壓器故障診斷圖像處理方面圖像識(shí)別、圖像分割、圖像檢測(cè)、圖像隱藏、圖像配準(zhǔn)、圖像拼接、圖像融合、圖像增強(qiáng)、圖像壓縮感知 路徑規(guī)劃方面旅行商問(wèn)題TSP、車輛路徑問(wèn)題VRP、MVRP、CVRP、VRPTW等、無(wú)人機(jī)三維路徑規(guī)劃、無(wú)人機(jī)協(xié)同、無(wú)人機(jī)編隊(duì)、機(jī)器人路徑規(guī)劃、柵格地圖路徑規(guī)劃、多式聯(lián)運(yùn)運(yùn)輸問(wèn)題、 充電車輛路徑規(guī)劃EVRP、 雙層車輛路徑規(guī)劃2E-VRP、 油電混合車輛路徑規(guī)劃、 船舶航跡規(guī)劃、 全路徑規(guī)劃規(guī)劃、 倉(cāng)儲(chǔ)巡邏、公交車時(shí)間調(diào)度、水庫(kù)調(diào)度優(yōu)化、多式聯(lián)運(yùn)優(yōu)化 無(wú)人機(jī)應(yīng)用方面無(wú)人機(jī)路徑規(guī)劃、無(wú)人機(jī)控制、無(wú)人機(jī)編隊(duì)、無(wú)人機(jī)協(xié)同、無(wú)人機(jī)任務(wù)分配、無(wú)人機(jī)安全通信軌跡在線優(yōu)化、車輛協(xié)同無(wú)人機(jī)路徑規(guī)劃、 通信方面?zhèn)鞲衅鞑渴饍?yōu)化、通信協(xié)議優(yōu)化、路由優(yōu)化、目標(biāo)定位優(yōu)化、Dv-Hop定位優(yōu)化、Leach協(xié)議優(yōu)化、WSN覆蓋優(yōu)化、組播優(yōu)化、RSSI定位優(yōu)化、水聲通信、通信上傳下載分配 信號(hào)處理方面信號(hào)識(shí)別、信號(hào)加密、信號(hào)去噪、信號(hào)增強(qiáng)、雷達(dá)信號(hào)處理、信號(hào)水印嵌入提取、肌電信號(hào)、腦電信號(hào)、信號(hào)配時(shí)優(yōu)化、心電信號(hào)、DOA估計(jì)、編碼譯碼、變分模態(tài)分解、管道泄漏、濾波器、數(shù)字信號(hào)處理傳輸分析去噪、數(shù)字信號(hào)調(diào)制、誤碼率、信號(hào)估計(jì)、DTMF、信號(hào)檢測(cè)電力系統(tǒng)方面微電網(wǎng)優(yōu)化、無(wú)功優(yōu)化、配電網(wǎng)重構(gòu)、儲(chǔ)能配置、有序充電、MPPT優(yōu)化、家庭用電、電/冷/熱負(fù)荷預(yù)測(cè)、電力設(shè)備故障診斷、電池管理系統(tǒng)BMSSOC/SOH估算粒子濾波/卡爾曼濾波、 多目標(biāo)優(yōu)化在電力系統(tǒng)調(diào)度中的應(yīng)用、光伏MPPT控制算法改進(jìn)擾動(dòng)觀察法/電導(dǎo)增量法、電動(dòng)汽車充放電優(yōu)化、微電網(wǎng)日前日內(nèi)優(yōu)化、儲(chǔ)能優(yōu)化、家庭用電優(yōu)化、供應(yīng)鏈優(yōu)化智能電網(wǎng)分布式能源經(jīng)濟(jì)優(yōu)化調(diào)度虛擬電廠能源消納風(fēng)光出力控制策略多目標(biāo)優(yōu)化博弈能源調(diào)度魯棒優(yōu)化電力系統(tǒng)核心問(wèn)題經(jīng)濟(jì)調(diào)度機(jī)組組合、最優(yōu)潮流、安全約束優(yōu)化。新能源消納風(fēng)光儲(chǔ)協(xié)同規(guī)劃、棄風(fēng)棄光率量化、爬坡速率約束建模多能耦合系統(tǒng)電-氣-熱聯(lián)合調(diào)度、P2G與儲(chǔ)能容量配置新型電力系統(tǒng)關(guān)鍵技術(shù)靈活性資源虛擬電廠、需求響應(yīng)、V2G車網(wǎng)互動(dòng)、分布式儲(chǔ)能優(yōu)化穩(wěn)定與控制慣量支撐策略、低頻振蕩抑制、黑啟動(dòng)預(yù)案設(shè)計(jì)低碳轉(zhuǎn)型碳捕集電廠建模、綠氫制備經(jīng)濟(jì)性分析、LCOE度電成本核算風(fēng)光出力預(yù)測(cè)LSTM/Transformer時(shí)序預(yù)測(cè)、預(yù)測(cè)誤差場(chǎng)景生成GAN/蒙特卡洛不確定性優(yōu)化魯棒優(yōu)化、隨機(jī)規(guī)劃、機(jī)會(huì)約束建模能源流分析、PSASP復(fù)雜電網(wǎng)建模經(jīng)濟(jì)調(diào)度算法優(yōu)化改進(jìn)模型優(yōu)化潮流分析魯棒優(yōu)化創(chuàng)新點(diǎn)文獻(xiàn)復(fù)現(xiàn)微電網(wǎng)配電網(wǎng)規(guī)劃運(yùn)行調(diào)度綜合能源混合儲(chǔ)能容量配置平抑風(fēng)電波動(dòng)多目標(biāo)優(yōu)化靜態(tài)交通流量分配階梯碳交易分段線性化光伏混合儲(chǔ)能VSG并網(wǎng)運(yùn)行構(gòu)網(wǎng)型變流器 虛擬同步機(jī)等包括混合儲(chǔ)能HESS蓄電池超級(jí)電容器電壓補(bǔ)償,削峰填谷一次調(diào)頻功率指令跟隨光伏儲(chǔ)能參與一次調(diào)頻功率平抑直流母線電壓控制MPPT最大功率跟蹤控制構(gòu)網(wǎng)型儲(chǔ)能光伏微電網(wǎng)調(diào)度優(yōu)化新能源虛擬同同步機(jī)VSG并網(wǎng)小信號(hào)模型 元胞自動(dòng)機(jī)方面交通流 人群疏散 病毒擴(kuò)散 晶體生長(zhǎng) 金屬腐蝕 雷達(dá)方面卡爾曼濾波跟蹤、航跡關(guān)聯(lián)、航跡融合、SOC估計(jì)、陣列優(yōu)化、NLOS識(shí)別 車間調(diào)度零等待流水車間調(diào)度問(wèn)題NWFSP、置換流水車間調(diào)度問(wèn)題PFSP、混合流水車間調(diào)度問(wèn)題HFSP、零空閑流水車間調(diào)度問(wèn)題NIFSP、分布式置換流水車間調(diào)度問(wèn)題 DPFSP、阻塞流水車間調(diào)度問(wèn)題BFSP5 往期回顧掃掃下方二維碼