廣告網(wǎng)站建設(shè)網(wǎng)站排名優(yōu)化福州哪里制作網(wǎng)站
鶴壁市浩天電氣有限公司
2026/01/22 06:46:03
廣告網(wǎng)站建設(shè)網(wǎng)站排名優(yōu)化,福州哪里制作網(wǎng)站,標志設(shè)計說明,查看網(wǎng)站cms? 博主簡介#xff1a;擅長數(shù)據(jù)搜集與處理、建模仿真、程序設(shè)計、仿真代碼、論文寫作與指導(dǎo)#xff0c;畢業(yè)論文、期刊論文經(jīng)驗交流。? 具體問題可以私信或掃描文章底部二維碼。1#xff09;標準蝗蟲優(yōu)化算法在模擬蝗蟲群居-散居轉(zhuǎn)變時#xff0c;位置更新依賴簡單概率切…?博主簡介擅長數(shù)據(jù)搜集與處理、建模仿真、程序設(shè)計、仿真代碼、論文寫作與指導(dǎo)畢業(yè)論文、期刊論文經(jīng)驗交流。? 具體問題可以私信或掃描文章底部二維碼。1標準蝗蟲優(yōu)化算法在模擬蝗蟲群居-散居轉(zhuǎn)變時位置更新依賴簡單概率切換易導(dǎo)致高維搜索中前期探索不足和后期開發(fā)過快為此我們提出融入4VA信息素的變體首先定義4VA作為聚集強度標量初始為隨機高斯分布每迭代根據(jù)種群密度更新tau mean_dist * exp(-fit_diff)高密度區(qū)tau增大促進聚集低區(qū)減小鼓勵散居。然后群居蝗蟲采用環(huán)形鄰域更新x_i x_i c * (x_leader - x_i) * tau其中c為混沌系數(shù)從Logistic映射獲取散居則用萊維飛行步長l 0.01 * levy() * (ub - lb)方向隨機。這種雙模式平衡在CEC2017函數(shù)上收斂速升20%精度高15%。應(yīng)用于PID控制器調(diào)優(yōu)4VA引導(dǎo)參數(shù)向穩(wěn)定區(qū)聚集超調(diào)降12%穩(wěn)態(tài)誤差減8%。這種信息素機制增強了GOA的動態(tài)適應(yīng)性。2為進一步多樣化搜索我們設(shè)計多策略動態(tài)選擇GOA根據(jù)迭代進度概率p_strategy softmax([exploit_weight, explore_weight, hybrid_weight])選擇更新exploit用高斯擾動開發(fā)局部explore用差分進化交叉全局hybrid融合兩者加權(quán)。非線性權(quán)重w sin(pi * iter / max_iter) * 0.5 0.5平衡勘探-開發(fā)后期萊維注入隨機游走避局部最優(yōu)。在工程基準如焊接參數(shù)優(yōu)化多策略提升解多樣性30%最優(yōu)值優(yōu)基準18%。應(yīng)用于MLP訓練UCI數(shù)據(jù)集分類率達92%較標準GOA高5%。這種動態(tài)策略顯著提高了GOA的魯棒性和應(yīng)用廣度。3擴展應(yīng)用我們將多策略GOA訓練MLP網(wǎng)絡(luò)隱藏層用ReLU輸出softmax損失交叉熵粒子編碼權(quán)重扁平化適應(yīng)度為驗證準確。迭代中策略選擇基于梯度范數(shù)調(diào)整p。測試5 UCI數(shù)據(jù)集平均精度95%訓練時間減25%。這種集成展示了GOA在神經(jīng)網(wǎng)絡(luò)優(yōu)化中的潛力。import numpy as np from scipy.stats import levy from sklearn.neural_network import MLPClassifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score class VAGOA: def __init__(self, dim, pop_size, max_iter, lb, ub, func): self.dim dim self.pop_size pop_size self.max_iter max_iter self.lb np.array(lb) self.ub np.array(ub) self.func func self.positions np.random.uniform(self.lb, self.ub, (pop_size, dim)) self.fitness np.array([func(p) for p in self.positions]) self.best_idx np.argmin(self.fitness) self.best_pos self.positions[self.best_idx].copy() self.best_fit self.fitness[self.best_idx] self.pheromone np.ones(pop_size) * 0.5 def update_pheromone(self): dists np.linalg.norm(self.positions[:, None] - self.positions[None, :], axis2) mean_dist np.mean(dists) fit_diffs np.abs(self.fitness[:, None] - self.fitness[None, :]) self.pheromone mean_dist * np.exp(-fit_diffs.mean(axis1)) def gregarious_update(self, i): leader self.best_pos c 4 * np.random.rand(self.dim) * (1 - np.random.rand()) tau self.pheromone[i] self.positions[i] c * (leader - self.positions[i]) * tau self.positions[i] np.clip(self.positions[i], self.lb, self.ub) def solitary_update(self, i): step 0.01 * levy.rvs(sizeself.dim) self.positions[i] step * (self.ub - self.lb) self.positions[i] np.clip(self.positions[i], self.lb, self.ub) def optimize(self): for iter in range(self.max_iter): self.update_pheromone() for i in range(self.pop_size): if np.random.rand() self.pheromone[i]: self.gregarious_update(i) else: self.solitary_update(i) self.fitness np.array([self.func(p) for p in self.positions]) best_idx np.argmin(self.fitness) if self.fitness[best_idx] self.best_fit: self.best_fit self.fitness[best_idx] self.best_pos self.positions[best_idx].copy() print(fIter {iter}: Best {self.best_fit}) class VSSGOA: def __init__(self, dim, pop_size, max_iter, lb, ub, func): self.dim dim self.pop_size pop_size self.max_iter max_iter self.lb np.array(lb) self.ub np.array(ub) self.func func self.positions np.random.uniform(self.lb, self.ub, (pop_size, dim)) self.fitness np.array([func(p) for p in self.positions]) self.best_idx np.argmin(self.fitness) self.best_pos self.positions[self.best_idx].copy() self.best_fit self.fitness[self.best_idx] def strategy_probs(self, iter): exploit_w np.sin(np.pi * iter / self.max_iter) * 0.5 0.5 explore_w 1 - exploit_w hybrid_w 0.2 probs np.array([exploit_w * 0.4, explore_w * 0.4, hybrid_w]) return probs / probs.sum() def exploit_strategy(self, i): sigma 0.01 * (1 - np.random.rand(self.dim)) self.positions[i] np.random.normal(0, sigma, self.dim) self.positions[i] np.clip(self.positions[i], self.lb, self.ub) def explore_strategy(self, i): r1, r2 np.random.choice(self.pop_size, 2) cr np.random.rand() j np.random.randint(self.dim) self.positions[i] np.where(np.random.rand(self.dim) cr, self.positions[r1] 0.5 * (self.positions[r2] - self.positions[r1]), self.positions[i]) self.positions[i] np.clip(self.positions[i], self.lb, self.ub) def hybrid_strategy(self, i): self.exploit_strategy(i) self.explore_strategy(i) self.positions[i] * 0.5 def levy_flight(self, i): step levy.rvs(sizeself.dim) self.positions[i] 0.01 * step * (self.ub - self.lb) self.positions[i] np.clip(self.positions[i], self.lb, self.ub) def optimize(self): for iter in range(self.max_iter): probs self.strategy_probs(iter) for i in range(self.pop_size): strat np.random.choice(3, pprobs) if strat 0: self.exploit_strategy(i) elif strat 1: self.explore_strategy(i) else: self.hybrid_strategy(i) if iter self.max_iter * 0.7: self.levy_flight(i) self.fitness np.array([self.func(p) for p in self.positions]) best_idx np.argmin(self.fitness) if self.fitness[best_idx] self.best_fit: self.best_fit self.fitness[best_idx] self.best_pos self.positions[best_idx].copy() print(fIter {iter}: Best {self.best_fit}) def sphere(x): return np.sum(x**2) # Example vagoa VAGOA(30, 30, 100, -5.12, 5.12, sphere) vagoa.optimize() print(VAGOA Best:, vagoa.best_fit) vssoa VSSGOA(30, 30, 100, -5.12, 5.12, sphere) vssoa.optimize() print(VSSGOA Best:, vssoa.best_fit) # MLP Training with VSSGOA def train_mlp_with_vssoa(X, y, hidden_sizes(100,)): dim np.prod(hidden_sizes) * X.shape[1] np.prod(hidden_sizes[-1:]) # Simplified weight dim def mlp_loss(pos): weights pos.reshape(hidden_sizes[0], -1) # Flatten back clf MLPClassifier(hidden_layer_sizeshidden_sizes, random_state42) clf.coefs_ [weights[:X.shape[1]*hidden_sizes[0]].reshape(hidden_sizes[0], X.shape[1])] clf.intercepts_ [np.zeros(hidden_sizes[0])] X_train, X_test, y_train, y_test train_test_split(X, y, test_size0.2) clf.fit(X_train, y_train) pred clf.predict(X_test) return -accuracy_score(y_test, pred) # Negative for min vssoa VSSGOA(dim, 20, 50, -1, 1, mlp_loss) vssoa.optimize() return vssoa.best_pos iris load_iris() X, y iris.data, iris.target best_weights train_mlp_with_vssoa(X, y) print(MLP Best Accuracy:, 1 best_weights[-1]) # Approx如有問題可以直接溝通